

O2 : Relation de conjugaison des lentilles minces

1^{ère} S

Notions et contenus	Compétences exigibles
Couleur, vision et image	Modéliser le comportement d'une lentille mince convergente à partir d'une série de mesures.
Relation de conjugaison ; grandissement.	Utiliser les relations de conjugaison et de grandissement d'une lentille mince convergente.
Accommodation.	Modéliser l'accommodation du cristallin.
Fonctionnements comparés de l'œil et d'un appareil photographique.	Pratiquer une démarche expérimentale pour comparer les fonctionnements optiques de l'œil et de l'appareil photographique.

Introduction

On a appris à déterminer graphiquement la position, la taille et le sens de l'image d'un objet par une lentille mince convergente. Cette méthode n'est pas très rapide et est entachée d'erreurs. Existe-t-il une autre façon de prévoir les caractéristiques de cette image ?

TP02-1: Modélisation du comportement d'une lentille mince convergente

I. Comment déterminer, par la calcul, la position, la taille et le sens de l'image ? A. <u>Formule de conjugaison</u>

Cet formule permet :

- de déterminer la position de l'image, connaissant la position de l'objet et f',
- de déterminer la position de l'objet, connaissant la position de l'image et f',
- de déterminer la distance focale f', connaissant la position de l'objet et de l'image.

$$\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{\overline{OF'}}$$
 ou $\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{f'} = C$

B. Formule de grandissement

Le grandissement permet de connaître la taille et le sens de l'image, connaissant ceux de l'objet.

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{OA'}}{\overline{OA}}$$

Ex 5 et 6 p.38 ; ex 20 p.41 (droite) ; 30 p.43

γ > 0	L'image et l'objet sont de même sens	γ > 1	L'image est plus grande que l'objet
γ <0	L'image est renversée	γ < 1	L'image est plus petite que l'objet

Lorsqu'un objet s'approche d'une lentille, son image s'en éloigne. Pourtant, l'œil voit nettement les objets lointains et les objets proches sans que la rétine s'éloigne du cristallin. Comment cela est-il possible ?

FTP02-2: Comparaison des fonctionnements optiques de l'œil et de l'appareil photographique

II. Accommodation de l'œil

- Pour que l'image d'un objet soit toujours formée sur la rétine, le cristallin se déforme, ce qui modifie sa distance focale : c'est le phénomène d'accommodation.
- Lorsque l'objet observé est à l'infini, le cristallin n'est pas déformé : il est au repos. L'œil ne se fatigue pas.
- Plus l'objet observé est proche de l'œil, plus la distance focale est petite et plus le cristallin est bombé (grâce aux muscles ciliaires). Avec l'âge, les muscles se détendent : c'est la presbytie.

III. Œil et appareil photographique

Ex 11 p.39; 19, 21 et 23 p.41; 27 p.42